How to use PrimerExplorer V5

1. Primer design using M13 as the template (Target)

1.1 Uploading the target sequence

The target sequence is uploaded in the PrimerExplorer V5 startup window (Figure 1.1).

First, click on the "Browse" button to select the target sequence file. The target sequence entered is set to less than 2 k bp. Three types of file formats are supported, plain text format (sequence only), FASTA format, and GenBank format.

Next, a parameter set (primer design conditions) is chosen from one of the three below.

1) Automatic Judgment: Based on the GC content of the target sequence, the initial parameter setting is specified. If the GC content is 45% or less, the "AT rich" parameters are used; if greater than 60%, the "GC rich" parameters are used. For all others, the "Normal" parameters are used.

2) Normal: The user enters the primer design conditions manually to design the primers. As the default conditions, the "Normal" parameters from 1) above are displayed.

3) User Assignment: Click on the [Browse...] button on the right and specify the parameter file of primer design conditions saved on the PC. The specified parameter file will be used as the initial setting to design the primers.

The default parameter set is "automatic judgment." In "automatic judgment," the GC content of the target sequence is automatically calculated, and the primer design conditions are automatically selected in the following primer design conditions ("Normal sequences primer design conditions" "GC rich sequences primer design conditions," "AT rich sequences primer design conditions ").

Next, click on the "Primer Design" button.

1.2 Designing the primer (Easy Mode)

As an example, a portion of the M13 sequence (length 1969 bp, GC content = 48.2%) will be used to design the primers. Click on the "Generate" button (Figure 1.2). This mode eliminates the need to change parameters and displays five primer sets that are likely to have high amplification efficiency. It automatically narrows down and prioritizes primer set candidates. The "Generate sets" box shows that five primer sets have been designed. Clicking on the "Display" button will display the Primer Set List results (Figure 1.3).

Figure1.2 Primer design window in Easy Mode

A list of primer sets designed on the target sequence appears in a separate window, and you can save the list in an Excel file by clicking the "Save List" button. Here, check the button at the left end of the window, and click on the "Confirm." The Primer Set Details window appears with detailed primer information for the checked primer sets (Figure 1.4). Check for problematic findings in each parameter. Click on the "Primer Information" for each primer set to save the information for that primer. This information should be used to design loop primers. In this window, clicking the "Save" button allows the sequence information of each primer to be set in an Excel file.

1. 2.	Push Push	"Prim "Save	er Infor " butto	mation n to do	" butt wnloa	on to d the	download Primer Info primer information in	rmation format the screen disp	file for loop prir blay layout.	ner designing.			
										DesignId 190319111918			
								To save the	primer				
P	rimer Ir	ofrma	tion	Sa	ve			sequence i	oformation				
1	ID:26	▼	dimer(rr	ninimum)dG=-2	36		Sequence ii	normation,				
labe	5'pos	3'pos	len Tm	5'dG	3'dG	GCrate	Sequence	click on the	"Save"				
F3	607	624	18 59.4	42 -3.96	-4.69	0.56	ACTACTGGGCTGCTTC	СТ					
B3	784	802	19 60.3	31 -5.20	-4.90	0.58	GTCCTCGCCGAAAATG.	ACC					
FIP			41				AGCTGACTGCGTTGAA	GGCTCT-GCAGG	AGTCGCATAAGG	GA			
BIP			40				CATGACTATCGTCGCC	SCACT-CACCTG	TCCTACGAGTTG	2			
F2	628	646	19 60.8	88 -6.10	-5.20	0.58	GCAGGAGTCGCATAAG	GGA					
F1c	668	689	22 65.6	68 -5.49	-5.93	0.55	5 AGCTGACTGGGTTGAA	GGCTCT	To save the	primer information			
B2	751	769	19 59.3	31 -5.50	-5.40	0.58	CACCTGTCCTACGAGT	IGC					
B1c	709	729	21 64.3	31 -4.56	-6.57	0.57	CATGACTATCGTCGCC	GCACT	for use in de	esigning the loop			
									primers, clic	k on the "Primer			
Pr	imer Inf	ormati	on	Sav	е				Information	' button			
2	ID·40		dimer(mi	nimum)	dG=-1 9	95			Information	button.			
label	5'pos	3'nos	len Tm	5'dG	3'dG (GCrate	Sequence						
F3	1576	1593	18 59.7	2 -7.03	-4.72	0.56	GCGACCTGAGCAACAAC	A					
B3	1769	1786	18 59.08	8 -5.00	-5.75	0.56	AACTGGCGGTATGGATG	iC					
FIP			41				ACATAATGGTGCAGGGC	CGCTG-TGAATGGTCTTCGGTTTCCG					
BIP			40				CGCAGGATGCTGCTGGC	CTAC-AATCACTCAGGGTCAATGCC					
F2	1594	1613	20 59.76	6 -4.07	-5.30	0.50	TGAATGGTCTTCGGTTI	CCG					
F1c	1643	1663	21 65.3	9 -3.29	-7.42	0.57	ACATAATGGTGCAGGGC	GCTG					
B2	1733	1752	20 59.64	4 -4.06	-5.40	0.50	AATCACTCAGGGTCAAI	GCC					
B1c	1677	1696	20 65.39	9 -7.02	-5.42	0.65	CGCAGGATGCTGCTGGC	TAC					
				-									
Pr		ormati	on	Sav	e	20							
ა Iabel	5'nos	3'nos	aimer(mii Ion Tm	5'dG	3'dG (23 GCrate	Sequence						
F3	128	145	18 60.5	5 -5.84	-5.42	0.61	ACCCTGGATGCTGTAG	C					
B3	317	334	18 59.6	1 -6.54	-6.03	0.61	GGCTCCAAGTAGCGAAG	C					
FIP			40				GTGACTGGCGATGCTGT	CGG-GCTTGGTT	ATGCCGGTACTG				
BIP			39				TATGGCGTGCTGCTAGCGCTA-CAAAGCGGTCGGACAGTG						
F2	150	169	20 60.49	9 -5.85	-4.23	0.55	0.55 GCTTGGTTATGCCGGTACTG						
F1c	198	217	20 65.19	9 -4.90	-6.19	0.65	GTGACTGGCGATGCTGI	CGG					
	279	296	18 60.06	6 -5.01	-5.05	0.61	.61 CAAAGCGGTCGGACAGTG						
B2	210						7 TATGGCGTGCTGCTAGCGCTA						

Figure 1.4 Primer Set Details window

1.3 Designing the primer (Expert Mode)

Although Easy Mode enables you to design primers with some capability, Expert Mode allows you to design with better capability or customized primers. To jump to the Expert Mode (Figure 1.6), click on the "Detail Setting" button in Easy Mode window (Figure 1.5). The default parameter set is "automatic judgment". In "automatic judgment", the GC content of the target sequence is automatically calculated, and the primer design conditions are automatically selected in the following primer design conditions ("Normal sequences primer design conditions", "GC rich sequences primer design conditions" and "AT rich sequences primer design conditions"). As indicated in the primer design window, "Parameter Set" of "Normal" has been selected. Normal parameter conditions are as indicated in Figure 1.6.

Next, click on the "Generate" button to start the primer design. When the primer design starts, the message area will indicate the status of progress in the primer design. The number of primer candidates for each region that fulfills the parameter conditions is displayed, as well as the number of inner primers (FIP, BIP) for each region. Based on these data, the primer sets are created. In this example, a total of 1,000 primer sets ware designed (Figure 1.7). Clicking on the "Display" button will display the Primer Set List result.

Figure 1.5 Primer design window

UPLOAD FILE: Normal.b	ĸt		
1 TICTCATGIT IGACA	SCITA TCATCGATAA	CONTINUES OFFICIAL CREATING TRANSPORT AND A Set Mutation Mut/Cons	
81 CETETATEAA ATCTA	ACAAT GCGCTCATCG	TOATCCTCGG CACOUTCACC CTBOATGCTS TAGGCATAGE CTTGGTTATE 160 Clear	
161 CCGGTACTGC CGGGCC	CTCIT GCGGGATATO	GTOCRATICOS ACAGCATOGO CASTCACTAR GEOGRACIAS TAGOGOTARIA 240 Fixed Primer	
241 ISCGIIGAIG CAATT	ICIAT GCGCACCCGI	TOTOGRANCA CTETCORACE OCTITERCOS CORCOLARES CTECTORETI 420	
321 COCTACTING AGOCA	CTATC GACTACGCGA	TOLIGOCOLO CACACCOSTO CIGIGOLICO TOLIGOCOSO ADOCATORIO 400	
401 GCCGGCATCA CCGGC	SCCAC AGGIGCGGII	GOTIGGIGGET ATATOGCOGA CATCACOGAT GOGGAAGATE GOGGTOGOCA 480 B1	
Sel Idealdeace Affect	TTUCS GEGGEGGIGE	ICARCENCE CARCENCIA CONSISTENCE TOCINATORS GRAFIDICAL 440 Clear	
221 0000000077 37030	CONT SCOULDERS	Social Case Case Case Case Control Care Control Care Case Case Case Case Case Case Case Cas	
ROL ACCOUNTING CTORA	2020 2022702702		
		Objective	
Number of Primer Candic 1000 Primer set(s) wes	dates: F1=251, F re generated.	2=242, F3=553, B1=253, B2=213, B3=568, FID=318, BID=268 O Common O Specific	
			Click on the
1.Select Range	Ignore range		"Generate" button.
	O Within F2-B2	Targeting Range	
2.Generate	Generate	T000 sets were generated.	
0 Directory	Conciato	Deer (f. e.) Dieleurd - Ordin Dub Neee	
o.Display	Display	Page 1 V Displayed. Sorting Rule None	Click on the
Basic De	sianina	please click below.	"Disales" button
Parameter Condition			"Display" button.
Farameter Condition	Ľ	Save Parameter Reset Parameter	
Length	F1c/B1c	20 0 22 0	
	F2/B2		
			"Parameter Set"
Tm	F1c/B1c	64 0 - 66 0	of "Normal" has
	F2/B2 F3/B3	$ \begin{bmatrix} 59 & \bigcirc \\ 59 & \bigcirc \\ \end{bmatrix} = \begin{bmatrix} 61 & \bigcirc \\ 61 & \bigcirc \\ \end{bmatrix} $	
			been selected.
GC rate(%)	40 - 65		
dG threshold	5'stability	[-3 ²]	
	3'stability		
	dimer check	-2.5	
Distances	(F2-B2)	120 🗘 - 180 🗘	
	Loop(F1c-F2) F2-F3		
	F1c-B1c		
Limitations	F1c/B1c F2/B2	3	
	F3/B3 Sets	3	
	0000	1000	
Mutation/Consensus	Peculiarity	Permission	
	high level	F1c 5'term B1c 5'term E	
		F3 3'term 🔲 B3 3'term 🔲	
		F1c inner	
		F2 Inner U B2 Inner U F3 Inner C B3 Inner C	
		F1c 3'term 🗌 B1c 3'term	
	Ļ	F2 5'term 🔲 B2 5'term 🔲	
	low level	F3 5'term 🔲 B3 5'term 🔲	
		Desat Parameter	
		Reset Patamoto	

Figure 1.6 Expert Mode

1.4 Displaying the results

Primer Set List window (Figures 1.5a, 1.5b) shows the ID number of each primer set on the left, and to its right the change in free energy, which indicates the propensity for dimer formation. A low value of the change in free energy results in a higher likelihood of dimer formation and thus the primer set is unacceptable. Green capital letters indicate the region F3, blue capital letters indicate the region F2, black lower-case letters indicate the region F1c, black capital letters the region B3, and green lower-case letters the B3 region.

The primer set is designed with the 5' end of F2 as the origin, and primer sets that fulfill the primer design conditions are displayed for the entire target sequence from the 5' end toward the 3' end. For each region F2, ones from other regions (regions F3, F1c, B1c, B2 and B3) are determined and displayed. After displaying the primers designed for the target sequence from the 5' end to the 3' end, the design is re-started from the 5' end to the 3' end. This operation is repeated until 1,000 primer design candidates are generated.

In this example, the length of the input target is 1,969 bp, and after the first round from the 5' end to the 3' end, 55 primer sets have been designed. After the second round, primers are designed from set 56 to set 110. The 5' end of the region F2 included in the final primer set after the first round is at 1,281 bp (the 5' end of F3 is 1,439 bp). (See Figure 1.5b) Several primers are then selected to compare the specific conditions.

Figure 1.8a Primer Set List window-1 (page 1)

Figure 1.8b Primer Set List window-2 (page 2)

Figure 1.9 Primer Set List (full view)

1.5 Primer set selection

Three to five or more primer sets that amplify different regions in the target sequence are designed, and their actual reactivities are compared to select the appropriate primer sets. If the region to amplify is pre-determined, the primer sets that amplify the region are selected.

If the appropriate primer is selected from among the multiple primer sets designed in the same region, detail information is compared. Here is an example of comparing two primer sets (ID number 1 and 2) in the Primer Set List window (Figure 1. 8a). First, check the boxes located to the left of each primer set, and click on the "Details" to open the Primer Set Details window (Figure 1.10).

	Prin	ner le	ength	_	Tm		5' end stability
Loca	ation of th	ne 3' e	ənd				3' end stability
Location	of the 5'	end			/		GC content
	Prim	ner Info	ormation		Save		
	1	D:1	din	ner(mini	imum)dG-	-2.01	Sequences
	label 5	pos 3	3'pos len	n Tm	5'dG 3'd	G GCrate	Sequence
	F3	62	79 18	8 60.91	-4.49 -6.2	25 0.56	TGCTAACGCAGTCAGGCA
ID number	B3	250	268 19	9 59.11	-6.85 -4.	56 0.53	GGGTGCGCATAGAAATTGC
	FIP		41	I			GCAGTACCGGCATAACCAAGCC-AATGCGCTCATCGTCATCC
	BIP		39)			GCCTCTTGCGGGATATCGTCC-GCTAGCAGCACGCCATAG
	F2	98	116 19	9 59.84	-5.73 -4.7	76 0.53	AATGCGCTCATCGTCATCC
	F1c	149	170 22	2 65.71	-4.98 -5.8	35 0.59	GCAGTACCGGCATAACCAAGCC
	B2	217	234 18	3 59.71	-5.23 -4.0	0.61	GCTAGCAGCACGCCATAG
	B1c	174	194 21	64.55	-5.93 -6.0	0.62	GCCTCTTGCGGGATATCGTCC
	Prim	ner Info	ormation		Save		
	2 IC	D:2	din	ner(mini	imum)dG=	-2.01	
	label 5	'pos 3	3'pos len	n Tm	5'dG 3'd	G GCrate	Sequence
	F3	62	79 18	8 60.91	-4.49 -6.2	25 0.56	TGCTAACGCAGTCAGGCA
	B3	250	268 19	9 59.11	-6.85 -4.	56 0.53	GGGTGCGCATAGAAATTGC
	FIP		40)			GCAGTACCGGCATAACCAAGCC-ATGCGCTCATCGTCATCC
	BIP		39	9			GCCTCTTGCGGGATATCGTCC-GCTAGCAGCACGCCATAG
	F2	99	116 18	3 59.08	-6.97 -4.7	76 0.56	ATGCGCTCATCGTCATCC
	F1c	149	170 22	2 65.71	-4.98 -5.8	35 0.59	GCAGTACCGGCATAACCAAGCC
	B2	217	234 18	3 59.71	-5.23 -4.0	0.61	GCTAGCAGCACGCCATAG
	B1c	174	194 21	64.55	-5.93 -6.0	0.62	GCCTCTTGCGGGATATCGTCC

Figure 1.10 Primer Set Details window

In the window displayed as in Figure 1.10, check for the stability of the 3' end at region F2, the 5' end at region F1c, the 3' end at region B2, and the 5' end at region B1c, in each primer set. Since these are the starting points for gene amplification by primers, their end stability is important. Specifically, check to see whether the ⊿G (stability) is -4.0 kcal/mol or lower. For example, the end with \angle G = -6.5 kcal/mol is more stable than the end with \angle G = -4.0 kcal/mol.

There is a "Primer Information" button above each ID number (Figure 1.11). This button should be used to design loop primers for the primer set selected. To save the primer sequence information, click on the "Save" (Figure 1.11). Click on the "Primer Information" to save the primer information to be used to explain loop primer design.

										To save the primer	
	P	imer In	format	ion		Sav	/e	-			
	1			dim	er(min	imum)	dG=-2	01		sequence information,	
	label	5'705	3'nos	lon	Tm	5'dG	3'dG	GCrate	Sequence	click on the "Save"	
	F3	62	79	18	60.91	-4.49	-6.25	0.56	тесталесслетеле	GCA	
	B3	250	268	19	59 11	-6.85	-4.56	0.53	GGGTGCGCATAGAAA	TTGC	
	FIP/	200	200	41	00.11	0.00	4.00	0.00	GCAGTACCGCCATAA		TCC
ļ									GCCTCTTGCGGGATA		G
To save the p	orimer	infor	matic	n	59 84	-5 73	-4 76	0.53	AATGCGCTCATCGTC	ATCC	10
for use in de	eianin	a the	loon		65 71	-4.98	-5.85	0.59	GCAGTACCGCCATAA	CCARCC	
	Signin	guic	юор		59 71	-5.23	-4.07	0.61	GCTAGCAGCACGCCA	TAG	
primers, click	c on th	ie "Pr	imer		64 55	-5.93	-6.04	0.62	GCCTCTTGCGGGATA	TAG	
Information"	buttor				04.00	-0.00	-0.04	0.02	OCCICIIOCOODAIA		
mormation	Dulloi	I.									
	Pr	rimer In	format	ion		Sav	/e				
	2	ID:2		dim	er(min	imum)	dG=-2	.01			
	label	5'pos	3'pos	len	Tm	5'dG	3'dG	GCrate	Sequence		
	F3	62	79	18	60.91	-4.49	-6.25	0.56	TGCTAACGCAGTCAG	GCA	
	B3	250	268	19	59.11	-6.85	-4.56	0.53	GGGTGCGCATAGAAA	TTGC	
	FIP			40					GCAGTACCGGCATAA	CCAAGCC-ATGCGCTCATCGTCAT	CC
	BIP			39					GCCTCTTGCGGGATA	TCGTCC-GCTAGCAGCACGCCATA	G
	F2	99	116	18	59.08	-6.97	-4.76	0.56	ATGCGCTCATCGTCA	TCC	
	F1c	149	170	22	65.71	-4.98	-5.85	0.59	GCAGTACCGGCATAA	CCAAGCC	
	B2	217	234	18	59.71	-5.23	-4.07	0.61	GCTAGCAGCACGCCA	TAG	
	B1c	174	194	21	64.55	-5.93	-6.04	0.62	GCCTCTTGCGGGATA	TCGTCC	

Figure 1.11 Selected Primer Set

2. Primer design for AT-rich sequences

In this section, primers will be designed for an AT rich gene sequence. We will use a portion of a viral gene of 1,140 bp in length and GC content = 34.5%.

Upload the target sequence in the Startup window of the PrimerExplorer.

Enter the target sequence file, and after confirming that "Automatic Judgement" has been selected for the parameter set, click on the "Primer Design" button. Click on the "Detail Settings" button to change to the Expert Mode (Figure not shown).

Figure 2.1 Primer Design window

The GC content of the sequence was automatically calculated, and the sequence was determined to be AT rich. Thus, "AT rich" was automatically selected as the "Parameter Set." The setting calls for a longer primer and a lower Tm value (see Figure 2.1).

Next, click on the "Generate" to design the primers. This will result in the design of 1,000 primer candidates (not illustrated). Subsequently, click on the "Display" to display the results of the primer design.

At this point, 147 primer sets have been designed from the 5' end to the 3' end. Additional primer sets from the 148th set have been designed again from the 5' end to the 3' end (see Figure 2.2).

The method described in Chapter 1 (see pp. 18-23) is then followed to compare the primer information, and to select the primer sets. It should be confirmed that at each primer region, the differences in the Tm between F1 and F2 and between B1 and B2 are about 5°C.

(Confirm		Save L	ist							DesignId 16	0412160037
Primer s	et: sortii	ng r	ule [None	1								
Farget DN Complem	A ient) SUS(*)	CTZ gat	ATTAGTAG taatcatc	AATTGATGCC ttaactacgg ********	ACCTTTTCAG tggaaaagtc ********	CTCGCGCCCC gagcgcgggg	AAATGAAAAT	ATAGCTAAAC tatcgatttg	AGGTTATTGA	CCATTTGCGA ggtaaacgct	AATGTATCTA	ATGGTCAAAC taccagtttc
Primer ID	dG(dimer)	11		21	31	41	51	61	71	81	91	101
[1]	-1.83	[1]	1	TGATGCC	ACCTTTTCAG	c GCCCC	AAATGAAAAI	ATAGCT				accagttto
[2]	-2.32	Г							ATTGA	CCATTTGC		tttg
[3]	-2.32		147 se	ets of prime	ers have be	een desiar	ned from th	e 5' end to	ATTGA	CCATTTGC		ttg
[4]	-2.32								ATTGA	CCATTTGC		
[5]	-1.51		the 3'	end and ad	ditional se	ets from th	e 148th se	t have bee	n ATTGA	CCATTTGCGA	L	
[6]	-1.51								ATTGA	CCATTTGCGA	L	
[7]	-1.51		desigr	ned again f	rom the 5'	end to the	3' end.		ATTGA	CCATTTGCGA	AAT	
[8]	-1.69			0						CGA	AATGTATCTA	ATGGTCAAAC
[9]	-1.54							[9]	GGTTATTGA	CCATTIGCGA	AAT CTA	ATGGTCAAAC
[10]	-1.54							[10]	GGTTATTGA	CCATTTGCGA	AAT TA	ATGGTCAAAC
[11]	-1.29							[11]	GGTTATTGA	CCATTTGCGA	AAT TA	ATGGTCAAAC
[12]	-1.54							[12]	GGTTATTGA	CCATTTGCGA	AAT A	ATGGTCAAAC
[13]	-1.29							[13]	GGTTATTGA	CCATTIGCGA	AAT A	ATGGTCAAAC
[14]	-1.54							[14]	GGTTATTGA	CCATTIGCGA	TAA	ATGGTCAAAO
[15]	-1.29							[15]	GGTTATTGA	CCATTIGCGA	TAA	ATGGTCAAAC
[16]	-1.29							[16]	GGTTATTGA	CCATTIGCGA	AAT	TGGTCAAAO
[17]	-1.29							[17]	GGTTATTGA	CCATTTGCGA	AAT	GGTCAAAC
[18]	-2.46							[18]	GGTTATTGA	CCATTTGCGA	AAT	GTCAAAC
[19]	-2.46							[19]	GGTTATTGA	CCATTTGCGA	AAT	TCAAAC

Figure 2.2 Primer Set List window

< Note>

For GC rich sequences, the parameter set for GC rich sequences are automatically selected and the primers are designed to cover the entire target sequence.

3. Changing the primer design conditions (parameter) (Precautions in primer design)

3.1 When too many primer sets are generated

a) Adjust the primer GC content.

When the primer GC content is 50 - 60%, favorable amplification performance will be obtained experimentally. Thus, the conditions are adjusted so that the GC content is in this range. Narrowing the permitted range for the GC content will be able to reduce the number of candidates.

b) The differences in the Tm are set to about 5°C for the primers (regions F2 and F1c, regions B2 and B1c).

In the LAMP reaction process, F1 (B1) and F1c (B1c) each self-anneal to form a loop structure, which serves as the starting structure for amplification. To facilitate forming this loop, set F1c (B1c) at a Tm value around 5°C higher than those of the other primers. When less stringent conditions (wider range of Tm's at each primer location) are used to design the primers, primer sets are generated, which consists of the primers with various Tm value. For this reason, the difference in the Tm in each primer region may be 3°C or less. Also, best results are obtained if the Tm's match between regions F2 and B2, regions F1c and B1c, and regions F3 and B3.

3.2 When too few primer sets are generated

If only small number of primer sets is generated for GC rich or AT rich sequences, it is plausible that the primer design conditions for the given target sequence are too stringent. In PrimerExplorer V5, the primer design conditions are automatically selected for GC rich or AT rich sequences, but for some sequences, in spite of these conditions only a few primer sets are generated. In such cases, the range of primer length or the range of Tm should be adjusted.

a) For AT rich sequences

For AT rich sequences, the Tm is calculated to be lower than non-AT rich sequences of the same length. For this reason the Tm based on the default primer length may be lower than the lower limit of default Tm value, and prevent primers from being designed. Thus, the primer length should be increased and/ or the Tm should be decreased.

b) For GC rich sequences

In contrast, for GC rich sequences, the Tm is calculated to be higher than non-GC rich sequences of the same length. For this reason the Tm calculated from the default primer length may be higher than the default Tm upper limit, and prevent primers from being designed. Thus, the primer length should be decreased and/or the Tm should be increased. Because how the Tm or the length is adjusted would be determined on a case-by-case basis, the length of each primer should be changed by one base at a time and the Tm should be changed 1°C at a time. Once a large number of primers have been generated, then stop the adjustment and select the primers.

3.3 Changing and storing the primer design conditions

When designing the primers, the user can change primer design conditions. The primer design conditions can be saved and revised. In this example (Figure 3.1), the Length, Tm, and GC content (%) have been changed. To save the primer design conditions, click on the "Save Parameters" button. As indicated in Figure 3.2, the program will ask how the conditions should be saved. Save the primer design conditions by specifying the file name and location.

			Design Option © Default ○ Common ○ Specific
	1.Select Range	Ignore range Within F2-B2 Targeting Range Between F1c-B1c -	
	2.Generate	Generate sets were generated.	
	3.Display	Display Page 1 V Displayed. Sorting Rule None V	
	If you can move to "B	asic Designing", please click below.	Click on the "Save
	Parameter Condition	AT rich V Save Parameter Reset Param	Parameters" button.
Red indicated the Length, Tm, and	Length	F1c/B1c19 25 F2/B217 25 F3/B317 25 25 25	
GC content (%) that were changed.	Tm	F164B1c 63 66 66 58 61 58 61 61 	
	GC rate(%)	50 - 60	

Figure 3.1 Changing the primer design conditions (Primer Design window)

3.4 Using the saved primer design conditions for the primer designing

Upload the target sequence in the startup window of the PrimerExplorer. Next, check on "User Assignment" in the parameter set and click on the "Browse" button to select the parameter file containing the primer design conditions. Click on the "Primer Design" button.

Figure 3.2 PrimerExplorer Ver. 5 startup window

The primer design window (Figure 3.4) will display the previously saved (Figure 3.2) primer design conditions. Here, the "Parameter Set" is displayed as "Custom."

Next, click on the "Generate" button to design the primers. The primers are selected using the procedures described in Section 1 (see p.13 - 18).

					Design Option
					O Common
					⊖ Specific
	1.Select Range	Ignore range Within F2-B2 Between F1c-B1c	Targeting Range		
	2.Generate	Generate	sets were gener	ated.	
	3.Display	Display	Page 1 V Displayed.	Sorting Rule None	~
"Custom" has been	If you can move to "Ba	sic Designing", please c	lick below.		
selected as the	Basic Des	signing			
"Parameter Set".	Parameter Condition	Custom ~]	Save Parameter	Reset Parameter
Proviously sayed	Length	F1c/B1c 19 F2/B2 17	 25 ↓ 25 ↓ 		
Fieviously saveu		F3/B3 17	‡ - 25 ‡		
primer design					
conditions will be	Tm	F1c/B1c 63 F2/B2 58	 66 66 61 		
displayed.		F3/B3 58	\$ - 61 \$		
	GC rate(%)	50 - 60			

Figure 3.4 Primer design window

Even if a "User specified" parameter of "Custom" has been selected, it is possible to switch to other primer design conditions (Normal, AT rich, GC rich). To do this, select another desired primer design conditions in the pull-down menu in "Parameter Set" prior to designing the primers. (See Figure 3.5)

	1.Select Range	Ignore range Within F2-B2 Between F1c-B1c	Targeting Range
	2.Generate	Generate	sets were generated.
	3.Display	Display	Page 1 V Displayed. Sorting Rule None V
	If you can move to "Ba	sic Designing", please	click below.
	Basic Des	Normal AT rich GC rich Custom	Save Parameter Reset Parameter
	Length	F1c/B1c 19	• - 25 •
Select another pri design conditions	imer in	F2/B2 17 F3/B3 17	$\begin{array}{c} \textcircled{\bullet} \\ \hline $
the pull-down me	nu. 	F1c/B1c 63 F2/B2 58 F3/B3 58	$\begin{array}{c} \bullet \\ \bullet $
	GC rate(%)	50 - 60	

Figure 3.5 Changing the parameters

4. Designing primers with specified primer locations

4.1 Specifying the primer locations in the target sequence

Primer can be designed for a specified primer location if the region is known to be easily amplified by PCR, or if the region to be amplified is pre-determined, or if it is desired to use the primers or primer locations used in PCR.

As in Figure 4.1, specify the primer location by clicking on the "primer location" button. The Figure shows that the "F2" button is clicked, and as in Figure 4.2, the region specified as the location F2 will be displayed.

Figure 4.1 Primer design window

Figure 4.2 Window after specifying the primer location

To change the location F2 to some other location, specify another location as shown in Figure 4.2, and click on the "F2" button again. As shown in Figure 4.3, the new location is now specified as the location F2.

The locations can be changed as above. To delete the information at this primer location, click on the "Clear" button to delete.

Figure 4.3 Primer design window

4.2 Specify the primer location to be designated for primer design

Now we design primers in which the primer location has been pre-specified. Here, as indicated in Figure 4.4, the location F3 has been pre-specified prior to the primer design. Specify the primer location by clicking on the "F3" button, and once the specified location has been displayed, then click on the "Generate" button to design the primers. (See Figures 4.4, 4.5)

Figure 4.5 Primer Set List window

5. Loop primer design

5.1 Uploading the primer information file

Return to the PrimerExplorer startup window and re-load the previously saved "primer information file". Click on the "Browse" button to select the file, and then click on the "Primer Design" button. (See Figure 5.1)

Figure 5.1 PrimerExplorer V5 startup window

5.2 Designing loop primers

After uploading the primer data file, the loop primer design window will be displayed as shown in Figure 5.2 on the next page. Keep the parameters as default and click on the "Generate" button.

1	TICTCATGIT	TGACAGCITA	TCATCGATAA	GCTTTAATGC	GGTAGTITAT	CACAGTTAAA	TIGCTARCGC	AGICAGGCAC	80	~]	
81	CGIGIATGAA	ATCTARCART	GCGCTCATCG	TCATCCICGG	CACCGTCACC	CIGGAIGCIG	TAGGCATAGG	CTIGGTIAIG	160			
161	CCGGTACTGC F3=====>	CGGGCCTCTT	GCGGGGATATC	GICCATICCG	ACAGCATCGC	CAGTCACTAT	GGCGTGCTGC	TAGCGCTATA	240			
241	TGCGTTGATG	CAATTICIAT	GCGCACCCGT	TCTCGGAGCA	CIGICCGACC	GCTTTGGCCG	CCGCCCAGTC	CTGCTCGCTT <====B	320			
321	CGCTACTIGG	AGCCACTATC	GACTACGCGA =B3======	TCATGGCGAC	CACACCCGTC	CIGIGGAICC	TCIACGCCGG	ACGCATCGIG	400			
401	GCCGGCATCA	CCGGCGCCAC	AGGIGCGGIT	GCTGGCGCCT	ATATCGCCGA	CATCACCGAT	GGGGAAGATC	GGGCTCGCCA	480			
481	CIICGGGCIC	ATGAGCGCTT	GITICGGCGI	GGGTATGGTG	GCAGGCCCCG	TGGCCGGGGG	ACIGTIGGGC	GCCATCTCCT	560			
561	TGCATGCACC	ATICCITGCG	GCGGCGGTGC	TCAACGGCCT	CAACCTACTA	CIGGGCIGCI	TCCTAATGCA	GGAGTCGCAT	640			
641	AAGGGAGAGC	GTCGACCGAT	GCCCTTGAGA	GCCTTCARCC	CAGTCAGCTC	CTTCCGGTGG	GCGCGGGGGCA	TGACTAICGT	720			
721	CGCCGCACIT	ATGACIGICT	TCTTTATCAT	GCAACTCGTA	GGACAGGIGC	CGGCAGCGCT	CTGGGICATT	TTCGGCGAGG	800		Click on the	
801	ACCOCITICG	CIGGAGCGCG	ACGATGATCG	GCCIGTCGCI	TGCGGTATTC	GGAATCTTGC	ACGCCCTCGC	TCAAGCCTTC	880	~	"Generate" bu	tton
											without chang	ing the
.Gen	erate	G	enerate		sets	were genera	ited.				parameters.	
.Disp	lay		Display	Pa	age 1 🗸 [)isplayed.						
f you	can have n	nore detail	settings, ple	ease click b	elow.							
	Deta	ail Settings										

Figure 5.2 Loop primer design window

A total of 24 sets of primer will be generated. Click on the "Display" button to display the Primer Set List (See Figure 5.3)

Figure 5.3 Loop primer design window (after primer design)

Figure 5.3 shows the results as a Primer Set List. At the top is the location of the saved primer information, underneath is the target sequence, and at the bottom are the loop primers. To examine the detailed information regarding these loop primer sets, check the boxes to the left of primer sets, then click on the "Confirm" to open the Primer Set Details window.

5.3 Detailed information on the loop primer sets

The Primer Set Details window (Figure 5.4) shows the detailed information regarding the loop primer sets previously selected.

		_						
S	ave							
1	ID:1		dim	er(min	imum)	dG=-2	.95	
label	5'pos	3'pos	len	Tm	5'dG	3'dG	GCrate	Sequence
LF	198	214	17	61.27	-6.24	-6.19	0.65	ACTGGCGATGCTGTCGG
LB	273	289	17	60.10	-5.88	-6.04	0.65	TCGGAGCACTGTCCGAC

Figure 5.4 Primer Set Details window

After more than one loop primer set has been designed, follow the method described in Chapter 1 (see pp. 17-27) to select a primer set.